7 research outputs found

    Mapping an Urban City Centre for Seismic Risk Assessment: Application to Valencia (Spain)

    Full text link
    [EN] Seismic risk in urban city centres may be high, even when the city is in low to moderate seismic areas, due to the vulnerability of the residential buildings. To assess the seismic vulnerability and estimate the expected damage in case of occurrence of an earthquake, an up-to-date detailed and comprehensive information of the residential building stock, such as number of dwellings, location, age, geometry, stiffness irregularities, structure, constructive system and practices, among others, is needed. This paper presents the authors experience, describing the step by step procedure followed to obtain the required information to classify and catalogue the residential buildings of the historical neighbourhoods of the city of Valencia into a database. Official sources, like the Cadastral Database, the website of the Urban Planning Service of the city of Valencia, the Municipal Historical Archive of Valencia, and the Historical Archive of the Valencian Architects Society, but also unexpected references are shared, pointing out the information that has been retrieved and its reliability. Additionally, relevant information must be obtained with an on-site data collection. This field work is essential not only to prove the accuracy of the abovementioned data but also to define some of the parameters related to the building vulnerability.The built database, included in a GIS system, has been used by the authors for seismic risk studies. This procedure can be implemented in future assessments at an urban scale.This paper is related with the research project "RISK-Terra. Earthen architecture in the Iberian Peninsula: study of natural, social and anthropic risks and strategies to improve resilience" (RTI2018-095302-B-I00), funded by the Spanish Ministry of Science, Innovation and Universities.Basset-Salom, L.; Guardiola Villora, AP. (2020). Mapping an Urban City Centre for Seismic Risk Assessment: Application to Valencia (Spain). International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (Online). 44:817-824. https://doi.org/10.5194/isprs-archives-XLIV-M-1-2020-817-2020S8178244

    Earthquake risk scenarios of the Ciutat Vella District in Valencia, Spain

    Full text link
    [EN] According to the United Nations Office for Disaster Risk Reduction cities must take measures to anticipate disasters and mitigate their impact, protecting homes and cultural heritage, minimizing losses due to earthquakes and other threats. After the recent earthquakes in historical city centres, the evaluation of the seismic risk, even in regions of low or moderate seismicity, is imperative, being damage assessment and loss estimation essential for its reduction. In this paper the seismic risk analysis of the residential buildings in the Ciutat Vella District in Valencia, with great historical and architectural value, is presented. The vulnerability of Ciutat Vella has been assessed with the Vulnerability Index Method establishing the seismic quality of the residential buildings according to their structural typology, conservation status, age and geometry; identifying the most vulnerable buildings. Damage probability matrices have been obtained for the deterministic and probabilistic earthquake scenarios, estimating for each of them, the seismic risk in terms of direct social and economic losses, mapping the results using a GIS system tool. Results confirm that the vulnerability of the building stock in Ciutat Vella is high being the seismic risk significant. In the event of an earthquake, many residential buildings included in the Catalogue of Listed Buildings of the Special Protection Plan of Ciutat Vella will be damaged. The detailed analysis of the most vulnerable buildings will provide, in future research works, criteria for intervention to enhance their structural seismic response, safeguarding the architectural heritage and contributing to the reduction of human and material losses.The Authors wish to acknowledge the students Ana Perez Recatala, Beatriz Alborch Vidal and Blanca Salavert Pamblanco for their help in the building information retrieval under a collaboration grant program funded by the Ministry of Education, Culture and Sports. Finally, the authors want to thank P. McGowan for the review of the English version of the paper.Guardiola Villora, AP.; Basset-Salom, L. (2020). Earthquake risk scenarios of the Ciutat Vella District in Valencia, Spain. Bulletin of Earthquake Engineering. 18(4):1245-1284. https://doi.org/10.1007/s10518-019-00745-7S12451284184Athmani AE, Gouasmia A, Ferreira TM, Vicente R, Khemis A (2015) Seismic vulnerability assessment of historical masonry buildings located in Annaba city (Algeria) using non ad-hoc data survey. Bull Earthq Eng 13:2283–2307. https://doi.org/10.1007/s10518-014-9717-7Ayuntamiento de Valencia (2017) Censo de población y viviendas. Oficina de Estadística http://www.valencia.es/ayuntamiento/estadistica.nsf/ . Accessed 12 Sept 2018Ayuntamiento de Valencia (2018) Plan Especial de protección de Ciutat Vella (PEP Ciutat Vella). http://www.valencia.es/ayuntamiento/urbanismo2.nsf/ . Accessed 5 Dec 2018Barbat AH, Yépez Moya F, Canas JA (1996) Damage scenarios simulation for seismic risk assessment in urban zones. Earthq Spectra 12(3):371–394Barbat AH, Pujades LG, Lantada N (2008) Seismic damage evaluation in urban areas using a capacity-spectrum based method: application to Barcelona. Soil Dyn Earthq Eng 28(10–11):851–865Barbat AH, Carreño ML, Pujades LG, Lantada N, Cardona OD, Marulanda MC (2010) Seismic vulnerability and risk evaluation methods for urban areas. A review with application to a pilot area. Struct Infrastruct Eng 6:17–38Basset-Salom L, Guardiola-Víllora A (2013) Influence of the maintenance in seismic response of Lorca historic centre masonry residential buildings after 11 May earthquake. Studies, repairs and maintenance of heritage architecture XIII. WIT Trans Built Environ 131:343–354Basset-Salom L, Guardiola-Víllora A (2014) Seismic performance of masonry residential buildings in Lorca’s city centre, after the 11th May 2011 earthquake. Bull Earthq Eng 12:2027–2048. https://doi.org/10.1007/s10518-013-9559-8Benedetti D, Petrini V (1984) Sulla Vulnerabilità di Edifici in Muratura: Proposta di un Metodo di Valutazione. L’industria delle Costruzioni 149(1):66–74Benedetti D, Benzoni G, Parisi MA (1988) Seismic vulnerability and risk evaluation for old urban nuclei. Earthq Eng Struct Dyn 16:183–201. https://doi.org/10.1002/eqe.4290160203Bernardini A, Gori R, Modena C (1990) An application of coupled analytical models and experiential knowledge for seismic vulnerability analyses of masonry buildings. In: Koridze A (ed) engineering aspects of earthquake phenomena, vol 3. Omega Scientific, Oxon, pp 161–180Blanca Giménez V, Castilla CabanesN, Cortés López JM, Martínez Antón A, Pastor Villa R (2010) Introducción al estudio de gestión de residuos de la construcción y demolición y estimación de cantidades generadas en obra. Universitat Politécnica de Valencia. http://hdl.handle.net/10251/7558Calvi GM, Pinho R, Magenes G, Bommer JJ, Restrepo-Vélez LF, Crowley H (2006) Development of seismic vulnerability assessment methodologies over the past 30 years. ISET J Earthq Technol 43(3):75–104Catastro. Base de datos del catastro. https://www1.sedecatastro.gob.es . Accessed 15 Sept 2017–27 Dec 2018Chever L (2012) Use of seismic assessment methods for planning vulnerability reduction of existing building stock. In: 15th world conference on earthquake engineering, Lisbon, Portugal, September 24–28, 2012. http://www.mediterranee.cerema.fr/IMG/pdf/2012_seismic_vulnerability_assessment.pdfCoburn A, Spence R (2002) Earthquake protection, 2nd edn. Wiley, Chichester. ISBN 0-470-84923-1D’Ayala D (2013) Assessing the seismic vulnerability of masonry buildings. In: Tesfamariam S, Goda K (eds) Handbook of seismic risk analysis and management of civil infrastructure systems. Woodhead Publishing, Sawston, pp 334–365. https://doi.org/10.1533/9780857098986.3.334D’Ayala D, Speranza E (2002) An integrated procedure for the assessment of seismic vulnerability of historic buildings. In: Proceedings of the 12th European conference on earthquake engineering, London, U.K., paper no. 561D’Ayala D, Speranza E (2003) Definition of collapse mechanisms and seismic vulnerability of historic masonry buildings. Earthq Spectra 19(3):479–509DOGV (2011) Plan Especial frente al Riesgo Sísmico en la Comunitat Valenciana. Decreto 44/2011 de 29 de abril. Diario Oficial de la Generalitat Valenciana nº 6512, 03/05/2011: 16979–17330Dolce M, Masi A, Marino M, Vona M (2003) Earthquake damage scenarios of the building stock of Potenza (Southern Italy) including site effects. Bull Earthq Eng 1(1):115–140FEMA–NIBS, Federal Emergency Management Agency, National Institute of Building Sciences (2000) HAZUS-1999 earthquake loss estimation methodology technical manual, Washington, D.C., USAFEMA–NIBS, Federal Emergency Management Agency, National Institute of Building Sciences (2003) HAZUS-MH MR3 technical manual multi-hazard loss estimation methodology. Earthquake model. Washington, D.C., USAFeriche M (2012) Elaboración de escenarios de daños sísmicos en la ciudad de Granada. Ph.D. tesis. Instituto andaluz de Geofísica y prevención de Desastres sísmicos. Universidad de Granada. http://digibug.ugr.es/handle/10481/29803#.WZy_LbZLe70Feriche M, Vidal F, García R, Navarro M, Vidal MD, Montilla P, Piñero L (2009). Earthquake damage scenarios in Vélez-Málaga urban area (Southern Spain) applicable to local emergency planning. In: 8th international workshop on seismic microzoning and risk reduction, Almería, Spain, 15–18 March 2009Feriche M, Vidal F, Alguacil G, Navarro M, Aranda C (2012) Vulnerabilidad y daño en el terremoto de Lorca de 2011, 7ª Asamblea Hispanoportuguesa de Geodesia y Geofísica, San Sebastián, España, 25-28 junio 2012Ferreira TM, Maio R, Vicente R (2017) Seismic vulnerability assessment of the old city centre of Horta, Azores: calibration and application of a seismic vulnerability index method. Bull Earthq Eng 2017(15):2879–2899. https://doi.org/10.1007/s10518-016-0071-9Franklin R, Caselles JO, Canas JA, Clapes J, Pujades LG, Navarro MK (2006) Estimación de la respuesta del sitio mediante el método del cociente espectral aplicado a ruido ambiental. Aplicación a la Ciutat Vella de Valencia, Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 22(2):169–191, http://hdl.handle.net/2099/4746 . Accessed 5 Dec 2012Giner JJ, Molina S, Jáuregui PJ (2003) Sismicidad en la Comunidad Valenciana, Física de la Tierra 15:163-187. http://revistas.ucm.es/index.php/FITE/article/view/12668 . Accessed 27 Apr 2018Giovinazzi S (2005) The vulnerability assessment and the damage scenario in seismic risk analysis. Ph.D. Thesis, Technical University Carolo-Wilhelmina, Braunschweig, Germany and University of Florence, ItalyGiovinazzi S, Lagomarsino S (2002) WP04: guidelines for the implementation of the 1 level methodology for the vulnerability assessment of current buildings: RISK-UE project. University of Genoa (Italy)Giovinazzi S, Lagomarsino S (2004) A macroseismic method for the vulnerability assessment of buildings. In: Proceedings of the 13th world conference on earthquake engineering, Vancouver, Canada, 1–6 August, 2004, paper no. 896Grünthal G (1998) European macroseismic scale 1998. In: Cahiers du Centre Européen de Géodynamique et de Séismologie, 15, LuxembourgGuardiola-Víllora A, Basset-Salom L (2015) Escenarios de riesgo sísmico del distrito del Eixample de la ciudad de Valencia. Revista Internacional de Métodos Numéricos para el Cálculo y Diseño en Ingeniería 31(2):81–90. https://doi.org/10.1016/j.rimni.2014.01.002Guardiola-Víllora A, Basset-Salom L, Pérez-García A (2018) Creating a residential building database: sources, contents and reliability. In: Reactive proactive architecture. Ed. Universitat Politècnica de València, chapter 7–14:458-463. ISBN 978-84-9048-713-6Guéguen Ph, Michel C, LeCorre L (2007) A simplified approach for vulnerability assessment in moderate-to-low seismic hazard regions: application to Grenoble (France). Bull Earthq Eng 5:467–490. https://doi.org/10.1007/s10518-007-9036-3gvSIG association (2009) gvSIG desktop, the open source geographic information system. http://www.gvsig.com/en/home . Accessed 26 Mar 2017Irizarry J, Lantada N, Pujades LG, Barbat AH, Goula X, Susagna T, Roca A (2011) Ground-shaking scenarios and urban risk evaluation of Barcelona using the Risk-UE capacity spectrum based method. Bull Earthq Eng 9(2):441–466. https://doi.org/10.1007/s10518-010-9222-6Irizarry J, Macau A, Figueras S, Goula X, Lantada N, Vendrell S, Pujades LG, Blázquez A (2012) Seismic risk assessment for the city of Girona, Spain. In: 15th world conference on earthquake engineering, Lisbon, Portugal, September 24–28, 2012IVE, Instituto Valenciano de la Edificación (2018) Coste unitario de ejecución de edificación residencial. http://www.five.es/productos/herramientas-on-line/modulo-de-edificacion/ . Accessed Oct 2018Kappos AJ, Stylianidis KC, Pitilakis K (1998) Development of seismic risk scenarios based on an hybrid method of vulnerability assessment. Nat Hazards 17(2):177–192Kappos AJ, Panagopoulos G, Panagiotopoulos C, Penelis G (2006) A hybrid method for the vulnerability assessment of R/C and URM buildings. Bull Earthq Eng 4:391–413. https://doi.org/10.1007/s10518-006-9023-0Lagomarsino S, Giovinazzi S (2006) Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings. Bull Earthq Eng 4(4):415–443. https://doi.org/10.1007/s10518-006-9024-zLamego P, Lourenço PB, Sousa ML, Rui Marques R (2017) Seismic vulnerability and risk analysis of the old building stock at urban scale: application to a neighbourhood in Lisbon. Bull Earthq Eng 15:2901–2937. https://doi.org/10.1007/s10518-016-0072-8Lantada N (2007) Evaluación del riesgo sísmico mediante métodos avanzados y técnicas GIS. Aplicación a la ciudad de Barcelona. PhD Thesis. U.P. Cataluña, Barcelona. http://hdl.handle.net/10803/6259 . Accessed Jan 2013Lantada N, Irizarry J, Barbat A, Goula X, Roca A, Susagna T, Pujades LG (2010) Seismic hazard and risk scenarios for Barcelona, Spain, using the Risk-UE vulnerability index method. Bull Earthq Eng 8(2):201–229. https://doi.org/10.1007/s10518-009-9148-zLantada N, Pujades LG, Barbat AH (2018) Earthquake risk scenarios in urban areas: a review with applications to the Ciutat Vella District in Barcelona, Spain. Int J Arch Herit 12(7–8):1112–1130. https://doi.org/10.1080/15583058.2018.1503367Llopis A, Perdigón L, Taberner F (2004) Cartografía Histórica de la ciudad de Valencia, volumen 1, (1608–1929). Facsimil editions DigitalsMaio R, Ferreira TM, Vicente R, Estêvão J (2016) Seismic vulnerability assessment of historical urban centres: case study of the old city centre of Faro, Portugal. J Risk Res 19(5):551–580. https://doi.org/10.1080/13669877.2014.988285Martínez-Cuevas S, Gaspar-Escribano JM (2016) Reassessment of intensity estimates from vulnerability and damage distributions: the 2011 Lorca earthquake. Bull Earthq Eng 14:2679–2703Martínez-Cuevas S, Benito MB, Cervera J, Morillo MC, Luna M (2017) Urban modifiers of seismic vulnerability aimed at Urban Zoning Regulations. Bull Earthq Eng 15:4719–4750. https://doi.org/10.1007/s10518-017-0162-2Mileto C, Vegas F (2005) Centro histórico de Valencia. Ocho siglos de arquitectura residencial. ISBN: 978-84-943475-5-9. Ed. General de ediciones de Arquitectura, S.L.Milutinovic ZV, Trendafiloski GS (2003) WP04. Vulnerability of current buildings. RISK-UE project: an advanced approach to earthquake risk scenarios with applications to different European towns. Institute of Earthquake Engineering and Engineering Seismology (IZIIS), SkopjeMouroux P, Bertrand E, Bour M, Le Brun B, Depinois S, Masure P (2004) The European RISK-UE project: an advanced approach to earthquake risk scenarios. In: Proceeding of the 13th world conference on earthquake engineering (13 WCEE), Vancouver, BC, Canada, 1–6 August, paper 3329Müge ün E (2011) An integrated seismic loss estimation methodology: a case study in north-western Turkey. PhD Thesis. School of Natural and Applied Sciences, Middle East Technical University, TurkeyMV-101 (1962) Norma M.V.101-1962 Acciones en la edificación. Ministerio de la Vivienda. Decreto 195/1963 de 17 de enero. BOE 35, 9/02/1963:2207–2225MV-103 (1972) Norma Básica M.V.103-1972. Cálculo de las estructuras de acero laminado en edificación. Ministerio de la Vivienda. Decreto 1353/1973, de 12 de abril. BOE 154, 28/06/1973:13126–13169MV-201 (1972) Norma M.V.201-1972 Muros resistentes de fábrica de ladrillo. Ministerio de la Vivienda. Decreto 1324/1972, de 20 de abril. BOE 130, 31/05/1972:9594–9624NCSE-02 (2002) Norma de Construcción Sismorresistente. Parte General y de Edificación. Comisión Permanente de Normas Sismorresistentes, Ministerio de Fomento. Real Decreto 997/2002 de 27 de septiembre. BOE 244, 11/10/2002:35898–35967NCSE-94 (1994) Norma de Construcción Sismorresistente, Parte General y de Edificación. Comisión Permanente de Normas Sismorresistentes, Ministerio de Fomento. Real Decreto 2543/1994 de 29 de diciembre. BOE 33, 08/02/1995:3935–3980Novelli VI (2017) Hybrid method for the seismic vulnerability assessment of historic masonry city centres. Ph.D. Thesis. University College London. http://discovery.ucl.ac.uk/1553222/1/Novelli_ID_PHD_thesis.pdf . Accessed 27 Apr 2018Ortiz Herrada M (2002) El-centro-historico-de-valencia-un-modelo-de-intervencion-patrimonial. Actas del I Congreso del GEIIC. Conservación del Patrimonio: evolución y nuevas perspectivas. https://www.ge-iic.com/2006/06/30/actas-del-i-congreso-del-geiic-conservacion-del-patrimonio-evolucion-y-nuevas-perspectivas/ . Accessed 27 Apr 2018PDS-1 (1974) Norma Sismorresistente PDS-1 (1974), parte A. Comisión Interministerial. Ministerio de Planificación del Desarrollo. Decreto 3209/1974 de 30 de agosto, BOE 279, 21/11/1974:23585–23601PGS-1 (1968) Norma Sismorresistente PGS-1 (1968), parte A. Comisión Interministerial de la Presidencia del Gobierno. Decreto 106/1969 de 16 de enero. BOE 30, 04/02/1969:1658–1675Reglamento sobre las restricciones del hierro en la edificación (1941) Gobierno de la Nación. Presidencia de Gobierno. Decreto de 22 de Julio de 1941.BOE 214, 02/08/1941:5848–5853Roca A, Irizarry J, Lantada N, Barbat A, Goula X, Pujades LI, Susagna T (2006) Método Avanzado para la Evaluación de la Vulnerabilidad y el Riesgo Sísmico. Aplicación a la Ciudad de Barcelona. Física de la Tierra 18:183–203Ródenas JL, Tomás A, García-Ayllón S (2018) Advances in seismic vulnerability assessment of reinforced concrete buildings applied to the experience of Lorca (Spain) 2011 earthquake. Int J Comput Methods Exp Meas 6(5):887–898. https://doi.org/10.2495/cmem-v6-n5-887-898Ros A, Casar JI, Romero B, Gomez A, Soler P, Alcalde C, Pecourt J, Matamoros C, Esparza R (1999) 5 años de intervenciones en Ciutat Vella: 1992–1997. ISBN: 9788486828240. Ed. CTAV, Valencia. http://www.arquitectosdevalencia.es/publicaciones/ctav/5-anos-de-intervenciones-en-ciutat-vella-valencia-1992-1997SEC (2018) Sede Electrónica del Catastro. Ministerio de Hacienda. Gobierno de España. https://www.sedecatastro.gob.es . Accessed 12 Sept 2018Sousa ML, Campos Costa A (2016) Evolution of earthquake losses in Portuguese residential building stock. Bull Earthq Eng 14:2009–2029. https://doi.org/10.1007/s10518-015-9809-zSpence RJS, So EKM (2011) Human casualties in earthquakes: modelling and mitigation. In: Proceedings of the 9th Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Society 14-16 April, Auckland, New ZealandTomás A, Ródenas JL, García-Ayllón S (2017) Proposal for new values of behaviour modifiers for seismic vulnerability evaluation of reinforced concrete buildings applied to Lorca (Spain) using damage data from the 2011 earthquake. Bull Earthq Eng 15:3943–3962. https://doi.org/10.1007/s10518-017-0100-3Tyagunov S, Stempniewski L, Grünthal G, Wahlström R, Zschau J (2004) Vulnerability and risk assessment for earthquake prone cities. In: 13th world conference on earthquake engineering, Vancouver, B.C., Canada, August 1–6, 2004, paper no. 868URSUA. Unidad de Registro Sísmico Universidad de Alicante (2010) Mapas de Intensidad sísmica esperada en la Comunidad Valenciana incluyendo efecto del sitio para 500 años y 1000 años. http://web.ua.es/ursua . Accessed 5 Oct 2017Vacareanu R, Lungu D, Aldea A, Arion C (2004) WP07. Report seismic risk scenarios handbook, Risk-UE Project, BucarestVicente R, Parodi S, Lagomarsino S, Varum H, Mendes Silva JAR (2011) Seismic vulnerability and risk assessment: case study of the historic city centre of Coimbra, Portugal. Bull Earthq Eng 9(4):1067–1096. https://doi.org/10.1007/s10518-010-9233-3Whitman RV, Reed JW, Hong ST (1973) Earthquake damage probability matrices. In: Proceedings of the 5th world conference on earthquake engineering, Rome, Italy, vol 2, pp 2531–254

    Seismic Vulnerability and Expected Damage in "Ground Zero Area" in El Cabanyal (Valencia)

    Full text link
    This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Architectural Heritage on 2021, available online: http://www.tandfonline.com/10.1080/15583058.2019.1710783[EN] The seismic vulnerability assessment of buildings in historic city centres is the first step to mitigate the possible damage, to prevent heritage losses and to preserve their historical identity. In this paper the analysis is focused on the residential buildings of ¿Ground zero Area¿ in El Cabanyal. This unique quarter of Valencia, once a fishermen¿s settlement, has a strong village-like identity and heritage value. Swallowed up by an expanding city centre and threatened by a poor redevelopment plan, which caused its degradation, its rehabilitation is nowadays the object of a new protection plan. The seismic vulnerability of the residential buildings has been assessed using the Vulnerability Index Method, obtaining a global damage index, and the equivalent built area expected to be destroyed. Results, implemented in a GIS environment, revealed that, due to the high vulnerability, many of the analysed listed buildings will be significantly damaged. A new detailed analysis is recommended, to define intervention and retrofitting criteria to improve their seismic response, preserving the architectural heritage and defending the unique identity of El CabanyalBasset-Salom, L.; Guardiola Villora, AP. (2021). Seismic Vulnerability and Expected Damage in "Ground Zero Area" in El Cabanyal (Valencia). International Journal of Architectural Heritage. 15(11):1623-1640. https://doi.org/10.1080/15583058.2019.1710783S16231640151

    WHEN THE RISK IS URBAN PLANNING. A CASE STUDY IN EL CABANYAL (SPAIN)

    Full text link
    [EN] This paper presents the vicissitudes of a residential dwelling built in El Cabanyal in 1923 and how poor urban planning can be a risk. The building corresponds to one of the most common traditional typologies: a terraced house with masonry load bearing brick walls and timber floors, three storeys, a linear staircase attached to the party walls, a courtyard at the rear and a gable roof. In the past, this building, proved to be resilient, overcoming the risk of collapse in some important episodes which affected directly El Cabanyal: the air raid attacks of the Valencian coastline settlements during the Spanish Civil War and the floods occurred in 1949 and in 1957. In 1988, the building was listed in the catalogue of the General Plan with a protection grade 3. The special protection plan (PEPRI 2001) which was supposed to protect and rehabilitate El Cabanyal, projected the extension of Blasco Ibañez Avenue to the sea and consequently, the division of the neighbourhood in two halves, tearing down an important number of houses. Subsequently, the City council began to expropriate buildings facilitating their occupation by squatters. The level of degradation caused by the urban planning is such that this area is known as `Ground Zero Area¿. At the time of writing this paper, the building appears to be illegally occupied and in a bad state of preservation. After almost a hundred years facing different risks, poor urban planning appears to be the cause of the destruction of this heritage building.This paper is related with the research project "RISK-Terra. Earthen architecture in the Iberian Peninsula: study of natural, social and anthropic risks and strategies to improve resilience" (RTI2018-095302-B-I00), funded by the Spanish Ministry of Science, Innovation and Universities.Guardiola Villora, AP.; Basset-Salom, L. (2020). WHEN THE RISK IS URBAN PLANNING. A CASE STUDY IN EL CABANYAL (SPAIN). International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (Online). 44(1):753-760. https://doi.org/10.5194/isprs-archives-XLIV-M-1-2020-753-202075376044

    Pandeo lateral de vigas de acero. Análisis comparado de las normas CTE DB SE-A, EAE y EC3

    Full text link
    [EN] The Basic Document, Structural Safety, Steel of the Spanish Technical Building Code provides mathematical expressions to obtain the lateral buckling resistance of hot-rolled steel beams. These expressions include a coefficient, C-1, that accounts for variation of the bending moment along the beam. However, this document only provides values for linear diagrams of bending moments. The instruction for Structural Steel, a copy of the latest version of Eurocode 3, does not include any method to obtain the elastic critical moment. On the contrary, a table with correction factors applicable to different types of bending moments diagrams is included. In this document both procedures have been combined and results have been compared to those obtained using other versions of the Eurocode 3. Finally, tables have been provided to ease the design of hot-rolled steel beams while preventing the lateral buckling.Guardiola Villora, AP.; Perez-Garcia, A.; Pérez, A. (2021). Lateral buckling of steel beams. Compared analysis of CTE DB SE-A, EAE and EC3 codes. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería. 37(2):1-18. https://doi.org/10.23967/j.rimni.2021.03.001S11837

    Creating a residential building database: Sources, contents ans reliability

    Full text link
    Nowadays, it is totally assumed that the historic city centres must be protected, being conservation, maintenance and enhancement of the existing residential buildings a must to guarantee their preservation, instead of removal and demolition. However, many residential buildings in old city centres do not meet the habitability, sanitation or energy efficiency requirements. Therefore, retrofitting and modernisation is needed in order to improve the quality of life of their inhabitants. The aim of this paper is to point out the pressing need of creating old city centres residential building databases including not only age, dimensions or number of storeys, but also structural system, construction materials (facades, parting walls, roofing, etc.) and graphic information (pictures, layouts, documents), essential to understand each building in its context, to highlight its values and to guarantee a sustainable retrofitting. A case study focused on the historic centre of Valencia is described and details are given about each source, including not only historic archives but also websites of real estate agencies and on-site study campaigns. Finally, the reliability of the most available sources is analysed and discussed attending to the personal experience of the authors.Guardiola Villora, AP.; Basset-Salom, L.; Perez-Garcia, A. (2018). Creating a residential building database: Sources, contents ans reliability. En Reactive proactive architecture. Editorial Universitat Politècnica de València. 458-463. http://hdl.handle.net/10251/159390S45846

    Private air-raid shelters designed by the Valencian architect Joaquín Rieta during the Spanish Civil War

    Full text link
    [EN] One of Valencia's outstanding twentieth-century architects, Joaquín Rieta is well known as the designer of some of the most famous buildings in the city centre of Valencia. But his promising career was interrupted by the Spanish Civil War, when Valencia became one of the most bombed cities in Spain. During this period, Rieta designed a series of private air-raid shelters to protect the civilian population. These pioneering structures, which formed an essential part of the architecture of air-raid shelters during World War II, have been analysed in terms of their materials, construction, and structural system. More than eighty years after the end of the Spanish Civil War, this article brings to light the documents of six air-raid shelters designed by Rieta, to reappraise the quality of the original projects, acknowledge the cultural value of these war architectural sites, and to retain the memory of this painful historical period alive in the present.Guardiola Villora, AP.; Basset-Salom, L.; Perez-Garcia, A. (2021). Private air-raid shelters designed by the Valencian architect Joaquín Rieta during the Spanish Civil War. The Journal of Architecture (Online). 26(3):286-315. https://doi.org/10.1080/13602365.2021.1897646S28631526
    corecore